Appendix O: Findings of peer-reviewed research Table O-1 Summary of empirical research on corporate tax apportionment policies, green job incentives, and manufacturing sales and use tax exemptions | Economic impact of corporate tax apportionment policies | | | | | | | |---|--------------------|-------------------|--|---|--|--| | Paper | Type
of program | Geographic region | Units of analysis | Method | Data
source | Findings | | Klassen and
Schackelford
(1998) | U.S. | States | Manufacturing shipments to state | OLS regression of change from 1983 to 1991 | U.S. Census Bureau,
Bureau of Economic
Analysis, ACIR, CCH* | Manufacturing sales are negatively associated with state sales factor rate for throwback states. | | Lightner
(1999) | U.S. | States | Percentage
change in
employment | OLS regression,
1994–95 | Bureau of Economic
Analysis, other | Apportionment formula is not significantly associated with employment growth. | | Goolsbee and
Maydew
(2000) | U.S. | States | Manufacturing
and non-
manufacturing
employment | Fixed effects
regression, 1978–
1994 | Bureau of Economic
Analysis, CCH, other* | Double-weighted sales weighting induces 1.1% change in state manufacturing employment and 0.7% nonmanufacturing employment. Effect is greater in capital intensive manufacturing (durable goods) than other manufacturing (nondurable goods) and nonmanufacturing. | | Agostini and
Tulayasathien
(2003) | U.S. | States | Foreign direct
investment | Pooled interval
regression with IV
for years 1980, 1987
1992, and 1997 | Bureau of Economic
Analysis FDI by state
and source country | Increasing weight of property factor decreases share of total FDI received by state. | | Gupta and
Hofmann
(2003) | U.S. | States | Capital
expenditures | Pooled and fixed
effects regression,
1983–1996 | U.S. Census Bureau,
ACIR, CCH, Site
Selection Magazine,
Energy Information
Administration* | Pooled results indicate that lower property factor weight has positive effect on capital investment but effect is small. Fixed effects regression indicates that property tax burden effect is present only for states that have unitary taxation or throwback rule which exacerbates burden effect. | | Paper | Type
of program | Geographic region | Units of
analysis | Method | Data
source | Findings | |---|--|-------------------|---|--|--|--| | Edmiston and
Arze del
Granado
(2006) | Georgia | Firms | Local sales,
payroll, and
property | Fixed effects
regression, 1992–
2002 | Georgia Department
of Revenue | Adoption of double-sales weighting has positive effect on payroll and property and large negative effect on sales. Net revenue effect is substantially negative. | | Gupta, et al
(2009) | U.S. | States | State tax revenues | Fixed effects, two-
stage least squares | U.S. Census Bureau,
Bureau of Economic
Analysis, CCH, Other* | States adopting double-weighted sales factor have 16%–18% lower corporate tax income revenues. | | Bernthal et al. (2012) | U.S. | States | Manufacturing
employment | Fixed effects
regression, 1978–
2010 | Bureau of Economic
Analysis, CCH, other* | Small but statistically significant relationship between sales apportionment weight and manufacturing. Effect is much smaller (4 times) than Goolsbee and Maydew (2000). | | Merriman
(2014) | U.S. | States | Manufacturing
employment | Fixed effects
regression, 1978–
1994 and 1978–2010 | Bureau of Economic
Analysis, CCH, other* | Study shows that Goolsbee and Maydew (2000) results are not robust to sample changes and econometric estimation improvements. Double-weighting sales does not have significant effect on manufacturing employment. | | Moore and
Bruce (2014) | U.S. | States | Personal income,
gross state
production, non-
farm employment | Fixed effects
regression with
policy interaction
effects, 1996–2010 | Bureau of Economic
Analysis, CCH, other* | Higher sales factor weight is associated with higher personal income, GSP, and employment. Higher corporate tax rates decrease the effects. | | Swenson
(2015) | Five U.S. States
that switched to
SSF (Georgia,
Louisiana, New
York, Oregon,
Wisconsin) | Firms | Employment and sales | Difference-in-
difference regressior | National
Establishment Time
Series (NETS) 1990–
2009 | Single sales factor apportionment is associated with expanding operations of locally based firms with interstate operations but effect is small. | | Clausing
(2016) | U.S. | States | Employment,
capital
expenditures,
sales, and
corporate tax
revenue | Fixed effects
regression | U.S. Census Bureau,
Bureau of Economic
Analysis, Other | Employment and investment are not sensitive to factor (payroll and asset) burden. Higher sales burden associated with reduced corporate tax revenue. | | Economic impact of green job incentives | | | | | | | | |---|--------------------|-----------------------------------|---|---|----------------------------------|--|--| | Paper | Type
of program | Geographic region | Units of analysis | Method | Data
source | Findings | | | Li (2013) | U.S. | Metropolitan
statistical areas | Number of green jobs | Two stage probit
least squares, 2006 | | Index of state and local clean energy and climate policy tools (including regulations and financial incentives) has a moderate, positive association with number of green jobs. | | | Lee (2017) | U.S. | State | Number of private
sector green jobs
per 1,000
population and
percentage of all
jobs that are
green jobs | Panel fixed effects
with IV, 1998–2007 | Pew Charitable
Trusts, DSIRE* | State renewable energy and energy efficiency regulations are associated with modest increase in green jobs, while green incentives have a slight negative association with jobs. | | | Economic impact of manufacturing sales and use tax exemptions | | | | | | | | |---|---------------------------|-----------------------|--|---|---|--|--| | Paper | Type
of program | Geographic region | Units of analysis | Method | Data
source | Findings | | | Hageman,
Bobek, and
Luna (2015) | U.S. | States | Manufacturing
capital
expenditures,
manufacturing
employment | Fixed effects
regression with IV,
1983–2006 | U.S. Census Bureau,
Bureau of Economic
Analysis CCH, Other* | Sales and use tax burden for manufacturing equipment
and materials is negatively associated with
manufacturing capital expenditures and employment.
Magnitude of effect, however, is small. | | | Mikesell and
Ross (2017) | Contiguous U.S.
states | State border counties | Manufacturing
wages and
employment | Cross border panel
data, quarterly 2001-
2011 | BURBALLOT LABOR | Sales and use tax burden is not associated with manufacturing employment or wages. | | SOURCE: Weldon Cooper Center. ^{*}Advisory Commission on Intergovernmental Relations (ACIR), Commerce Clearing House (CCH), DSIRE (Database of State Incentives for Renewable Energy).